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SUMMARY

The flux-integral method is a procedure for constructing an explicit, single-step, forward-in-

time, conservative, control-volume update of the unsteady, multidimensional convection-

diffusion equation. The convective-plus-diffusive flux at each face of a control-volume cell

is estimated by integrating the transported variable and its face-normal derivative over the

volume swept out by the convecting velocity field. This yields a un/que description of the

fluxes, whereas other conservative methods rely on nonunique, arbitrary pseudoflux-

difference splitting procedures. The accuracy of the resulting scheme depends on the form

of the sub-cell interpolation assumed, given cell-average data. Cellwise constant behaviour

results in a (very artificially diffusive) first-order convection scheme. Second-order

convection-diffusion schemes correspond to ceHwise linear (or bilinear) sub-cell

interpolation. Cenwise quadratic sub-cen interpolants generate a highly accurate convection-

diffusion scheme with excellent phase accuracy. Under constant-coefficient conditions, this

is a uniformly third-order polynomial interpolation algorithm (UTOPIA).



THE FLUX INTEGRAL

Consider the cell-average value of the transported scalar, _, at a reference (central) cell, C.

In two dimensions, an exact, single-step, explicit update can be written for the "new"

(superscript 4-) cell value:

_c = _c ÷ FLUX,,(/,./')- FLUX_(i+I,j) + FLU-Xs(i,f) - FLUX_(i,j+I) (I)

using standard index and compass-point notation. Note that this is strictly conservative in

that the east-face convective-plus-diffusive flux of cell C, at (i,j), is identical to the west-

face flux at (i+l,j'); similarly for the north- and south-face fluxes. In (1), the west-face

flux, for example, is given by

FLUX.(/,. (c_ _,,) h (o_,,

where the angle-brackets represent time-averages over At, and, assuming (for convenience)

a uniform square mesh of side h, the west-face normal-component Cottrant number is

u.(OAt O)
q,. - h

and the west-face nondimensional diffusion parameter is written in terms of the (scalar)

diffusivity, D,,, as

_W

_ D.(0 At (4)
]l 2

with analogous definitions for the south face.

The convective contribution in (2) is equivalent to the total "mass" of 4, swept

through the west face along particle paths (or streamfines, in steady flow) over At. In

principle, one could trace the particle paths backwards to the earlier time-level, for each

face. This is shown, schematically, in Figure 1. Then the (exact) purely convective

contribution is equivalent to integrating _b(x,y) at the earlier time-level over the area (or

volume, in three dimensions) swept out by the particle paths:

° f (5)
PPA

where PPA stands for particle-path area.
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The flux-integral method now approximates (5) by replacing the particle-path area by

the flux-integral parallelogram (FIP) by assuming the convecting velocity field to be locally

constant (in both space and time) in the vicinity of the face in question. This is shown in

Figure 2; note that the parallelogram is defined by the local (space-time-averaged) Courant

number components, c_,, and c,, (taken as both positive in the case shown). The flux-integral

convective approximation is thus

= f I 4p(x,y)d(x/h) d(ylh) (6)

A similar approximation for the diffusive contribution results in

- = - -_ I _ O'_awh Ocb d(xlh) d(ylh) (7)
FI_

If the _ub-cell behaviour at the earlier time-level,where a,, is an appropriate average.

¢b(x,y), were known in complete detail, (6) would represent an exact flux due to pure

convection by a constant velocity field. For non-zero diffusion, it turns out that (7)

represents the diffusive flux to third order--provided the sub-cell behaviour is known in

enough detail. The major task in the flux-integral method is thus an interpolation problem:

Given a set of cell-average values,

estimate sub-cell behaviour in an accurate

(and, ideally, shape-preserving) manner,

while observing the cell-average constraint:

I I _(x,y) d(x/h) d(y/h) = _ for all cells (8)

with an analogous formula in three dimensions.

For constant-density flow, the face-normal component Courant numbers used in

constructing the flux-integral parallelograms should satisfy a discrete continuity equation for

each cell:

c_,,,(i,j) - c_,(i+l,j) + c_(i,j') - c_,(i,j+l) = 0 (9)
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Since the area of a flux-integral parallelogram is proportional to the face-normal Courant

number component (e.g., the shaded area in Figure 2 is c_h2), an initially constant scalar

field will remain constant everywhere (to machine accuracy). This can be seen in Figure 3,

where the sum of the "inflow areas" equals the sum of the "outflow areas" (irrespective

of the local individual face-transverse Courant number components).

In the following sections, a number of different sub-cell interpoiants are explored.

A cellwise constant interpolant (locally equal to the cell average) results in a (very

artificially diffusive) first-order convection scheme; modelled physical diffusion is absent,

to a consistent order. This is not a viable scheme for practical CFD calculations. But,

because of its simplicity, it is instructive to explore the flux-integral method in this case.

Bilinear downw/nd-weighted sub-cell interpolation results in a two-dimensional analogue of

the Lax-Wendroff scheme [1]. A cellwise quadratic interpolant over each cell generates a

convection-diffusion scheme that is formally third-order accurate under constant-coefficient

conditions. These three methods are briefly compared using the well-known "rotating hill"

test problem.

FIRST-ORDER CONVECTION

Fluxes will be calculated for the west face of cell C. Entirely analogous fluxes for the south

face can be written down using appropriate (x,y) permutations. Unless otherwise noted, the

Courant number components will be taken as both positive. Referring to Figure 4, the west-

face convective flux integral corresponding to (6) is seen to consist of three parts

FLUX,,(/,./) ffi I t - 12 + 13 (10)

where It is the integral over the rectangular area, 1246, in cell W; 12 is over the triangular

area, 123, in cell W; and/3 is over a similar triangular area, 456, in cell SW. Assuming

to be cellwise constant (equal to the respective cell average), the integrals in (1) are

proportional to the respective areas times the local cell-average value. This gives

FIRST-ORDER FIM:

FLUXw(i,f ) = c_, _w- c_c,,2 _w + c_c_ _sw
(I1)

or, on rearrangement,
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r_ Cyw

rLux.(i,j3 = c=. - (_w - _sw)] (12)

The term in square brackets can be considered to be the effective average convected face

value. Note that it consists of the one-dimensional, first-order upwind ("donor-cell") value,

_w, modified by-a transverse-gradient term proportional to the transverse Courant number

component at the face. It should be clear how the formula changes for other combinations

of signs of ¢_ and ¢_. To a consistent order, there is no (physical) diffusive flux, since

cellwise constant behaviour implies a zero-gradient within each cell.

Substituting (12), and the analogous formula for FLUX,, into (1) gives an overall

(constant-coefficient) convective update equation:

+c:, - - ÷ (13)

This is identical to a semi-Lagrangian update [2], using bilinear interpolation around the

departure point, collocated at node values: 4_c, 4_w, 4'sw, and 4_s (located at the centroids

of the respective cells). [For ceilwise constant, linear, or bilinear interpolants, node values

are equal to the respective cell-average values. This is not the case for higher-order

interpolants.]

Using an appropriate upwinding strategy for other convecting velocity directions, it

is not hard to show that the yon Neumann stability condition for this scheme is given by a

square region in the (c_, c,) plane:

Ic=! -< 1 and Ic, I <- 1 (14)

SECOND-ORDER METHODS

Second-order convection-diffusion methods result from assuming ceilwise linear or bilinear

sub-cell behaviour. In this case, it is convenient to introduce local, normalised coordinates

in cell W:

and

x (i I) (15)
h

= __ - j (16)



as shown in Figure 5. Note that the central cell, C, is located at (i,j). The top of the flux-

0.5+ c,,,(__ 0.5) (17)
%,

integral parallelogram is represented by

,1_(_) =

A general bilinear sub-cell interpolant within cell W takes the form

#,(_,,7): c, + c_ + c3,7+ c,t_,7

The cell-average constraint, (8), implies

(18)

C, = @w (19)

The slope-constants, (72 and Cs, and the twist-constant, (74, can be chosen in a number of

For example, a two-dimensional analogue of Fromm's method [3] resultsdifferent ways.

from choosing

1 (@c- @ww) (20)c2 --

and

(21)

G -- o (22)

Note that this represents a symmetrical distribution with respect to cell W, independent of

velocity direction. Upwind or downwind weighting can also be used. In the interest of

brevity, only one scheme will be considered here in detail. This is based on downwind-

weighted bilinear interpolation. For example, throughout cell W, the interpolant is

collocated (for c=,, c_,, > 0) at node va/ues: @c, @s, and @su, (in addition to @w)- This

turns out to be a two-dimensional generalisation of the Lax-Wendroff method. For positive

Courant number components, the interpolant within cell W is



_(_, ,7) =

(23)

with a corresponding normal gradient, within eel1 W,

Using local, cell-centered coordinates, similar formulae hold for each cell; in particular, cell

SW formulae can be obtained from (23) and (24) by shifting all indexes "south" by one unit

in 06), (23), and (24).

As before, the convective flux integral is split into three geometrically distinct parts.

In thiscase,

When rearranged as

0,[0i ]II = [ 4_(_,17)d_/ d_ (25)

0.5 -c_, -0.5

0.5 -e,,,

(26)

(27)

(28)

this will be recognised as the one-dimensional Lax-Wendroff flux [3]. The second (negative)

contribution over the triangular area in cell W is

°'[° ]-/2 = - [ 4_(f,_l)d,/ d/j (29)

0.5-%, _l._(f)
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Using (IT), this becomes, after some rearrangement,

Then, Is is obtained from 12 by shifting all indices south by one unit.

The diffusive flux is computed in a similar way. In particular

- a,, ig(.b._),** a, _,_/9_c_. IJ d_d_ (31)
FIP

This is also conveniently split into three parts. In this ease

_ a..._.It = _ a. (_c - _w) (32)

which will be recognised as the classical, second-order, one-dimensional expression for the

diffusive flux across the west face. But there are also contributions from transverse

convective coupling. In particular,

_w

+ -- I 2 -- Ofw
Czw

-T

6

(33)

and the corresponding Is term is again obtained by shifting all indices south by one unit.

The total west-face convective-plus-diffusive flux is then
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BI'LINEAR DOWNWIND:

FLUX,,(/,.]) = c.,_,

$ T

c,_-- T[(_. - 7..)+(a.. - _,..)]

÷_'_'-[(7,,,- 7.) - (g,_- 7.)]

c_ - -

C 2 _

- O_w

(a_- a.) - _ [d,,,- _,a- (7.,_,- _,..)]
4

* w [(a.- :7._. ,_a- (7.. - :a,, *7._,)]

(34)

The interesting thing about this formula is that (referring to Figure 4) every term is face-

centered in both x and y directions. In this case, the downw/nd-weighted sub-ceR

interpolation is "b_danced '' by the natural upwinding involved in the flux-integral

calculation. The resulting convective-pins-diffusive flux is independent of velocity direction

--just like the Lax-Wendroff method in one dimension. The overall update equation

involves the square, nine-point stencil, centered on ¢. For pure convection at constant

velocity, the update is identical to that of a semi-Lagrangian scheme using the same nine-

point stencil

Although the semi-Lagrangian convection scheme can be obtained from the flux-

integral form, the reverse is not true. This is easily seen by writing out the complete update

based on (34). Notice how the c_(c_cy) terra from the east-west flux difference combines with

the cy(cf) term from the north-south flux difference. The purely convective yon Neumann

stability region is again the square, given by (14). Stability regions in the (c,, cy) plane for

finite values of, are discussed elsewhere [4].
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UNIFORMLY THIRD-ORDER POLYNOMIAL INTERPOLATION ALGORITHM

Assuming symmetrically weighted cellwise quadratic sub-cell interpolation within each cell

leads to a uniformly third-order polynomial interpolation algorithm for convection and

diffusion (under constant-cx_fficient conditions). In a variable (but solenoidal) convecting

velocity field, with possibly variable diffusivity, the algorithm is no longer formally third-

order accurate; however, the practical accttracy is significantly better than that of formally

second-order schemes. Phase accuracy, in particular, is excellent --just as in the case of the

corresponding one-dimensional QUICKEST scheme [5,6,7].

form"

Within cell W, the quadratic interpolation takes the (velocity-direction-independent)

1 (_c + _sw + _ww + _'_w, - 4_w),_(_,,0 = _,,,- -_-

Note that this satisfies the cell-average constraint, (8).

is not the same as the cell average; in fact,

1 (_c + _s wCw = ¢(0,0) = ¢,,- 2%

The x-direction gradient within cell W is

(35)

Also note that the nodal value, _w,

+ @_w + @_- 4@w) (36)

Convective Flux in the Absence of Diffusion

For pure convection, the west-face flux is computed in the usual way. As perhaps, by now,

expected, the first component of the flux integral generates the one-dimensional (in this case,

QUICKEST formula:

/i = c_ [_- (4,c+ _w) - c=, (;c- ;w) - (1 - c_)T T, (;,c- ÷ (38)
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Note the appearance of the upwind-weighted normal-curvature term (resulting from the

natural upwinding inherent in the flux integral). Integration over the respective triangular

The final form of theareas in cells W and SW introduces several cross-difference terms.

purely convective flux is (referring to Figure 4):

QUADRATIC (CONVECTION):

T

(I - _ -

_ c,. (_,. _ _T

- c,.(¼- _- -

%.-- - -r)

C 2 _

FLUX,,(/,/) = c.,,

09)

It is instructive to identify the role played by each of these terms. The first three

terms represent the one-dimensional (QUICKEST) contribution; note that all the remaining

terms contain a c_, coefficient. The fourth term in (39) is the transverse gradient that

previously appeared in the first-order scheme. This is, in fact, a second-order term--just

as is the normal gradient (second term). The fifth term represents tw/st, an interaction

between normal and transverse convection. The next term is a transverse-curvature

contribution. The final two terms in (39) are actually fourth-order contributions. Dropping

these terms does not affect the formal (constant-coefficient) third-order aceuracy of the

overall update equation. However, they do affect the stability of the scheme. Without the
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higher-order terms, the purely convective stability region is approximately the diamond-

shaped region

Ic l + Ic l < 1 (4o)

Including these terms (that arise naturally in the flux-integral formulation) results once again

in the square stability region given by (14).

Third-Order Diffusive Flux

Applying the usual three-part-integral procedure to (37) results in the following diffusive

flux:

i
2

(41)

The first term is the classical (one-dimensional) second-order first-difference across the face.

The second, norma/-curvature term, represents the effect of normal convection on the time-

averaged normal gradient; this is a third-order convection-diffusion cross-coupling term that

also appears in the one-dimensional QUICKEST formula [5]. The third, tw/st, term

represents the coupling effect of transverse convection; this is a (two-dimensional) third-

order term. The final term is actually a (partial) fourth-order cross-coupling term, kept,

once again, because of enhanced stability properties [4].

Diffusive Contribution to the Convective Flux

The convection-diffusion coupling terms just described represent the effects of convection

in estimating the diffusive flux. They arise natttrally in the flux-integral formulation. For

uniformly third-order consistency, one also needs to estimate the analogous cross-coupling

effects of diffusion on the convective flux. Because of the assumed curvature in the sub-cell
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interpolation, diffusion changes the value of _, over At as it is being convected through a

particular cell face. As shown in [8], this change is given by (a/2)V2_. Performing the

usual three-part flux-integral calculation leads to an additional diffusive contribution to the

convective flux of the form

÷c_ - 2g.. 7,_) - - 2g...
OgwC)_

/ t (42)

which must be added to (39) to give the total convective flux. The convective-plus-diffusive

flux at the west face is thus the sum of 09), (41), and (42). A yon Neumann stability

analysis of the constant-coefficient overall update algorithm [4] shows that the useful region

in (c_, %, a) space is given, as a minimum, by the "cylinder":

Icl _< 1, 0 _< a _< 0.25 (43)

Reference [4] also describes a simple and inexpensive (vectorisable) upwinding strategy

based on the "generic stencil" technique, using FORTRAN functions NINT and SIGN.

CONVECTIVE TEST PROBLEM

The three schemes described here have been applied to the rotating Gaussian hill problem

under purely convective conditions (a=0). Details of the mesh, time-step, and other

parameters are given in Reference [4]. Figure 6 shows the initial state in a superfine-grid

rendering. The cell-average initial data is shown in Figure 7. Figure 8 shows the first-order

results after one (anticlockwise) rotation. The "Lax-Wen&off" cell-average results are

shown in Figure 9, with a close-up of the peak region, showing the sub-cell behaviour, in

Figure 10. Figures 11 and 12 give the corresponding UTOPIA results. As mentioned

before, the first-order scheme is far too artificially diffusive to even be considered for

practical application. As in one dimension, the Lax-Wendroff-type scheme is excessively

dispersive, showing significant phase-lag errors in the "wake". By contrast, UTOPIA has

good accuracy and excellent phase behaviour, just as in the one-dimensional case [5,7].
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Extensive other studies of purely convective and convective-diffusive test-problems

at a number of grid-refinements have consistently shown the superiority of UTOPIA. Not

surprisingly, it is more accurate than lower-order schemes. It is also more expensive --per

mesh point calculation. The important conclusion, however, is that, for a prescribed

accuracy, UTOPIA can be used on a much coarser mesh (with a concomitantly larger time-

step) -- the overall cost is then much lower than that of lower-order schemes.

CONCLUSION

The flux-integral method is a powerful technique for estimating convective-plus-diffusive

fluxes in a strictly conservative formulation of an explicit, single-step update formula for the

multidimensional convection-diffusion equation. The assumption of locally constant

convecting velocities near each control-volume face means that the formal accuracy of the

convection terms is at most second order--e.g., the convecting velocity field could be

staggered in time by _t/2 with respect to transported scalars. Variable diffusivity would

typically be lagged, and therefore only first-order accurate in time. However, spatial

accuracy is enhanced by using higher-order sub-cell interpolation. Under constant-

coefficient conditions, an Nth-order sub-cell interpolation leads to an (N+ l)th-order accurate

convection-diffusion scheme--in both space and time.

Cellwise constant sub-cell interpolation leads to an unworkable (artificially diffusive)

first-order convection scheme. Cellwise linear or bilinear interpolants generate second-order

convection-diffusion schemes. Downwind-weighted bilinear interpolation gives a multi-

dimensional analogue of the Lax-Wen&off scheme. However, because of the unsymmetrical

weighting of the interpolant, this leads to a highly dispersive convection scheme with strong

phase-lag errors--just as in one dimension. Cellwise quadratic interpolation (independent

of velocity direction) leads to a very accurate convection-diffusion scheme with excellent

phase behaviour. Under constant coefficient conditions, this is a uniformly third-order

polynomial interpolation algorithm (UTOPIA). Since highly accurate solutions can be

obtained on relatively coarse grids, UTOPIA is much more cost-effective than lower-order

methods.
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Because fluxes are estimated directly, (for a given sub-ceU interpolation) the flux-

integral method produces unique formulae for the fluxes. This is in contrast to other

methods that have been used to construct conservative multidimensional convection (or

convection-diffusion) schemes. For example, Ekebj_erg and Justesen [9] developed a

nominally third--order, two-dimensional convection-diffusion scheme by successive

elimination of truncation error terms arising from a lower-order scheme. The

nonconservative single-step explicit update was then rewritten in a conservative pseudoflux-

difference form. But the pseudofluxes chosen by Ekebja_rg and Justesen are not unique;

except for first-order (and some simple second-order) schemes, there is, in general, no

unique way of rewriting a nonconservative update in a conservative flux-xlifference form [4].

Recently, Raseh [10] has used, as a starting point, a (constant-coefficient) third-order

semi-Lagrangian convection scheme, and then rewritten the update in conservative form.

Recognising the nonuniqueness problem, Rasch uses weighting parameters to generate a

family of possible pseudoflux-difference algorithms. For certain choices of the weights, the

(purely convective form of the) Ekebj_erg-and-lustesen scheme can be retrieved. For other

weights, Rasch's convection scheme is equivalent to (the convective part of) that used by the

present authors in Reference 8; this is also the form used by Rasch. For still other choices

of the weights, a nominally third-order convective flux equivalent to 09)-- but with the last

two (higher-order) terms removed--can be obtained. The conservatively rewritten semi-

Lagrangian approach does not generate diffusive fluxes.

In a very recent manuscript, LeVeque [11] has used a technique for purely convective

flows similar, in some respects, to the flux-integral method described here. For a constant

convecting velocity field, LeVeque's Method V is a ten-point third-order two-dimensional

convection scheme. This is the minimum number of points needed for third-order accuracy.

The overall convective update is equivalent to the semi-Lagrangian scheme used as the

starting point for Rasch's method; it is also equivalent to that of Ekebj_erg and Justesen.

LeVeque's Method VI is equivalent to the purely convective portion of the flux-integral

method developed here; i.e., 09). LeVeque does not confider diffusive fluxes.
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For simplicity, the present paper has been confined to two dimensions. It should be

clear that the flux-integral method generalises to three dimensions in a straight-forward

manner. The technique can be used with even higher-order sub-cell interpolation

(presumably using velocity-direction-independent interpolants in order to minimise

dispersion); however, higher-order diffusive-diffusive and convective-diffusive cross-

coupling terms appear to be quite complex. Further research is needed to extend the method

to larger time steps. Finally, it should be pointed out that shape preservation in the sub-ceU

interpolation automatically results in a positivity-preserving conservative multidimensional

formulation -- thus obviating the need for ad hoc flux-limiter constraints. This is an area of

current research.
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Figure 1 Schematic of particle paths flowing into the west face of cell C.

J

Figure 2 The flux-integral parallelogram in the vicinity of the west face of cell C;

c_,, c_, > O.
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Figure 3 Flux-integral parallelograms on each face of cell C.
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Figure 4 Twelve cells in the vicinity of the west face of cell C; c,, G > 0.
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Figure 5 Definition of local normalised coordinates within cell W.
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Figure 6 Initial Gaussian distribution shown on a very fine grid. This is aLso the exact

(purely convective) solution after an integral number of rotations;

_ffi._ - 1.000.
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Figure 7 Initial state of cell-average values, shown as a two-dimensional histogram on

the computational grid; _.... - 0.991.
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Figure 8 Solution after one (anticlockwise) rotation for the first-order method. In this

case, the histogram of cell-average values also represents the ceUwise constant

sub-ceU interpolation. _... - 0.152; _.._ - 0.0.
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Figure 9 Solution of ceU-average values after one rotation using the second-order

convection scheme; _.... - 0.787; _._. = - 0.149.
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__ D _ce_l p_l_/-. ' "

Figure 10 Close-up of the downwind-weighted bilinear sub-ceil interpolation in the peak

region, showing discontinuities across cell faces; _.,.. - 0.823;

_._. = - 0.176.
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Figure 11 Solution of cell-average values after one rotation using the purely convective

form of UTOPIA; _,,., = 0.804; _ffi_ - -0.008.
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Figure 12 Close-up of the quadratic sub-cell interpolation in the peak region, showing

(small) discontinuities across cell faces; _,_ = 0.810; _.,. = -0.010 (not

shown).
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